Reforming Technologies to Improve the Performance of Combustion Systems
نویسندگان
چکیده
A large number of theoretical and experimental studies have shown that the performance of kerosene combustion increases significantly if combustion is being assisted by the addition of hydrogen to the fuel/air mixture during the combustion process. It reduces the amount of CO, CO2 and NOx emissions, while increasing the flame stability limits. It also helps in bruning fuel/air mixtures at much leaner equivalence ratios. The same principle could be applied to gain benefits in gas turbine combustors. Hydrogen for this purpose could be produced by the reforming of hydrocarbon fuels using a reformer module. This paper presents key hydrogen reforming technologies which, by implementation in gas turbine combustors, hold potential for improving both their performance and service life.
منابع مشابه
Simulation of Dual Fuel Combustion of Direct Injection Engine with Variable Natural Gas Premixed Ratio
Nowadays, the major challenge of diesel engines development is simultaneous nitrogen oxides and soot emissions reduction without the thermal efficiency drop. Hence, different combustion concepts should be investigated to reach optimum emission and performance conditions in diesel engines without expensive aftertreatment systems. This paper presents the results of a study on a dual fuel (DF) eng...
متن کاملThermoeconomic comparison between the performance of small-scale internal combustion engines and gas turbines integrated with a biomass gasifier
Recently, many countries have paid substantial attention to power generation from biomass gasification, particularly through small-scale plants. A number of power plant models have been suggested and analyzed; however, certainly, desirable configurations have not been identified yet. Moreover, their performances are ordinarily difficult to compare, especially owing to the fact that working ...
متن کاملEffect of Sorbitol/Oxidizer Ratio on Microwave Assisted Solution Combustion Synthesis of Copper Based Nanocatalyst for Fuel Cell Grade Hydrogen Production
Steam reforming of methanol is one of the promising processes for on-board hydrogen production used in fuel cell applications. Due to the time and energy consuming issues associated with conventional synthesis methods, in this paper a quick, facile, and effective microwave-assisted solution combustion method was applied for fabrication of copper-based nanocatalysts to convert methanol to hydrog...
متن کاملA Novel Study of Upgrading Catalytic Reforming Unit by Improving Catalyst Regeneration Process to Enhance Aromatic Compounds, Hydrogen Production, and Hydrogen Purity
Catalytic reforming is a chemical process utilized in petroleum refineries to convert naphtha, typically having low octane ratings, into high octane liquid products, called reformates, which are components of high octane gasoline. In this study, a mathematical model was developed for simulation of semi-regenerative catalytic reforming unit and the result of the proposed model was compared with ...
متن کاملEffect of K2O on the catalytic performance of Ni catalysts supported on nanocrystalline Al2O3 in CO2 reforming of methane
CO2 reforming of methane (CRM) over unpromoted and potassium promoted Ni/Al2O3 catalysts was studied. The catalysts were prepared by impregnation method and characterized by X-ray diffraction (XRD), N2 adsorption (BET), temperature programmed reduction (TPR), temperature programmed oxidation (TPO) and scanning electron microscope (SEM) techniques. The obtained results showed that addition of K2...
متن کامل